UNIX

s Introduction
& Programmer Interface
esUser Interface
=::d = Process Management
I zMemory Management
#File System
£1/0 System

& Interprocess Communication

30

* All rights reserved, Tei-Wel Kug Natiopa Taiwan University, 2001.

Process Management

=How to represent a process for
zProcess control
#CPU scheduling

& Rrocess Control Block (PCB)

procfi]
&Everything the system must know when the

process is swapped out.
pid, priority, state, timer counters, etc.

#Things the system should know when process
IS running

s signal disposition, statistics accounting, files[], etc.
31

* All rights reserved, Tei-Wel Kug Nationa Taiwan University, 2001.

Process Management - DS

per-process
54_SBSD I lkarnal ctacle _Raj
- © Zone
| .U
text argv, agc,...
ructur L user stack
ISt ucture > P
h M
X_caddr p_textp =20
B it Data Segment
| p_faddr page
rocfi
pentr[y] _pObr teble Code Segment —FPC
X u_proc

32

* All rights reserved, Tei-Wel Kug Natiopa Taiwan University, 2001.

Process Management - DS

&sproc[l] entry

&pid, ppid

&suser_priority, system_ priority

&state, e.g., SRUN, SSLEEP,, ZOMBIE, etc.
&ssignal mask, signal state

&stimer counters

&Etc

estext structure (memory resident)

A list to all processes sharing the text
segment — a counter is maintained!

33

* All rights reserved, Tei-Wel Kug Nationa Taiwan University, 2001.

Process Management - DS

&Virtual memory address space — user
space
&' Text segment

#Read-only except when debuggers’
checkpoints must be set up (rw).

#Data and stack segments
=RW mode!
&5.U called user structure

#System call parameters and return
values, table of opened files, etc.

34

* All rights reserved, Tei-Wel Kug Natiopa Taiwan University, 2001.

Process Management - DS

#sResources for the process in the
kernel space

#A page table per process
&sper-process kernel stack

&For the process running in the kernel
mode, e.g., for interrupt stacking.

#System data segment = .u + per-
process kernel stack

Other resources
=PC, CPU registers, opened files, etc.

35

* All rights reserved, Tei-Wel Kug Nationa Taiwan University, 2001.

Process Management — Life
Cycle

& Process State

‘y ‘
G T oy
interrupt @ it

completed

I/O or event waiting

36
* All rights reserved, Tei-Wel Kug Natiopa Taiwan University, 2001.

Process Management - Lists

& Ready Queue

1 1% procfi] | > [proc[j]

2 _

4 -
e » proclK]
o I
= =
< T— o
a alproc ~ lproc]j]
8 =
%. zombproc = proc[m]
Q
v
l freeproc proc[n] g
* All rights reserved, Tei-Wel Kug Nationa Taiwan University, 2001.

Process Management — fork

& fork()
1. Allocate a new proc entry
2. Register the “text structure”
3. Allocate memory for data and stack
if (pid = fork()) { segments
4. Copy the data and stack segments of its

\',\.,git(); parent to those of the process.

}else { 5. Build a new page table by copying from
. the page table of its parent!

execve(“a.outl); 6. Copy .u

} . .

& Open file descriptors, usr/grp identifiers,
signal handling, etc.

38

* All rights reserved, Tei-Wel Kug Natiopa Taiwan University, 2001.

Process Management —
execve/vfork

= execwe()

& Disgard text, data, and stack segments of the process and
reset,its page table

& Load the executable and rebuild text, data, and stack
segma@nts and its page table

& Reset signal handling routines, etc.
5 vfork()
& Borrow $egments of its parent
& Implementation Concerns
#Suspend the parent until the process terminates or call execve()
&0r
& duplicate the page table of its parent
& Do|not create pages unless Copy-on-write pages

39

* All rights reserved, Tei-Wel Kug Nationa Taiwan University, 2001.

Process Management

4 4BSD Per-process
] "\ _process gr T U
: argv, agc,...
— | User stack
proc|i] oA v
+— VM space — region listg A |
entry heap
o odr] - Data Segment
page
1 p_pObr tevle Code Segment
u_proc 40
* All rights reserved, Tei-Wel Kug Natiopa Taiwan University, 2001.

ocess Management - Scheduling

& Scheduling Priority

User-mode: p_usrpri 50~127

ernel-mode: p_priority 0 ~ 49

&For the waiting of any event in the kernel mode.

rocesses with p_priority between (PZERO,
PUSER) (i.e., 22 and 50) would be waken up by
a signal. (in 4.3BSD, PZERO = 25)

& CPU|Scheduling

&sround-robin priority-driven scheduling

uantum = 100ms
41

* All rights reserved, Tei-Wel Kug Nationa Taiwan University, 2001.

Buseaoep-A11i01id

rocess Management - Scheduling

& Ready Queue
0
1 N proc[i] [|proc]j]
2 4
N broc[k] =

—i— * Preemptive Scheduling Policy
*Once aprocess arrives with a
higher priority while the running
process is in the user mode or exits
from a system call, a context switch

127 occurs immediately!

<

42

All rights reserved, Tei-Wei Kug Natiopial Taiwan University, 2001.

ocess Management - Scheduling

& Scheduling Priority
#sRaising Priority
#1_onger period being blocked, e.g., one sec
#Blocking in the kernel mode
enice() ~ -20
&sLowering priority
#Recent CPU usage
&Exit from the kernel mode
enice() ~+20
p_usrpri 3 PUSER + ceiling(p_cpu/4) + 2p_nice ; every tick
p_cpu =[Pload/(2load+1)]*p_cpu+p_nice ; every second
p_cpu = p_cpu [2load/(2load+1)]P-drime - once the processis awaken.

* All rights reserved, Tei-Wel Kug Nationa Taiwan University, 2001.

rocess Management - Scheduling

=z Context Switch

#Synchronous CS
\Voluntary
& Call system calls and then sleep
#involuntary
&Time quantum is up!
Asynchronous CS
&Device interrupts

a4

* All rights reserved, Tei-Wel Kug Natiopa Taiwan University, 2001.

CPU Scheduling - Revisiting

gps:rce Processes System calls such as 1/0 req
which may cause the releasing
Top CPU of another process!
oS __Half v
Bottom Timer expires to
—Half « Expire the running process's
time quota
hardware

 Keep the accounting info
for each process

45

* All rights reserved, Tei-Wel Kug Nationa Taiwan University, 2001.

rocess Management - Scheduling

Synchronous Voluntary Context Switch

& A system call finally invoke sleep(&wchan)!
#wchan — address of some data struture
#Lbolt: wait for one second
&proc: wait for child process
£U: wait for a signal
#buffer header: wait for /0O operations

#File reading, block flushing, page fault, etc.

zRace Condition
call sleep()

The waiting event, such as an interrupt,occurs
A

Process cdll

6
* All rights reserved, Tei-Wel Kug Natiopa Taiwan University, 2001.

ocess Management - Scheduling

system calls, e.g.
process READ/WRITE
: & A general solution in UNIX
Top for resolving race conditions!
Half #Raise hardware processor
Bottom priority _
Half J &®€.9., mask interrupts

#Single-thread kernel

hardware interrupts 25 AN obstacle for multi-CPU
UNIX!

47

* All rights reserved, Tei-Wel Kug Nationa Taiwan University, 2001.

Process Management

&sscheduler (pid =0)
#CPU scheduling

init (pid = 1)
#Create daemons, login processes,
etc.

#pagedaemon (pid = 2)
zSwapper — mid-term scheduler

* All rights reserved, Tei-Wel Kug Natiopa Taiwan University, 2001.

48

10

