
1

30
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

UNIX

?Introduction
?Programmer Interface
?User Interface
?Process Management
?Memory Management
?File System
?I/O System
?Interprocess Communication

31
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management
?How to represent a process for
?Process control
?CPU scheduling

?Process Control Block (PCB)
?proc[i]
?Everything the system must know when the

process is swapped out.
?pid, priority, state, timer counters, etc.

?.u
?Things the system should know when process

is running
?signal disposition, statistics accounting, files[], etc.

2

32
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - DS

?4.3BSD

text
structure

proc[i]
entry

page
table Code Segment

Data Segment

PC

heap

user stack
argv, argc,…

sp

.u

per-process
kernel stack

p_textpx_caddr

p_p0br

u_proc

p_addr

Red
Zone

33
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - DS

?proc[I] entry
?pid, ppid
?user_priority, system_priority
?state, e.g., SRUN, SSLEEP,, ZOMBIE, etc.

?signal mask, signal state
?timer counters
?Etc

?text structure (memory resident)
?A list to all processes sharing the text

segment – a counter is maintained!

3

34
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - DS
?Virtual memory address space – user

space
?Text segment
?Read-only except when debuggers’

checkpoints must be set up (rw).

?Data and stack segments
?RW mode!

?.u called user structure
?System call parameters and return

values, table of opened files, etc.

35
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - DS

?Resources for the process in the
kernel space
?A page table per process
?per-process kernel stack
?For the process running in the kernel

mode, e.g., for interrupt stacking.
?System data segment = .u + per-

process kernel stack
?Other resources
?PC, CPU registers, opened files, etc.

4

36
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management – Life
Cycle

?Process State

SIDL
SRUN

SRUN

SSLEEP

SZOMB
fork

scheduled

interrupt exit

I/O or event waiting
completed

SSTOP

suspend

resume

37
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - Lists
?Ready Queue

…

Priority-decreasing

0
1
2

proc[i] proc[j]

proc[k]

allproc

zombproc

freeproc

proc[j] …

proc[m] …

proc[n] …

exit()

wait()

5

38
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management – fork

? fork()
1. Allocate a new proc entry
2. Register the “text structure”
3. Allocate memory for data and stack

segments
4. Copy the data and stack segments of its

parent to those of the process.
5. Build a new page table by copying from

the page table of its parent!
6. Copy .u
? Open file descriptors, usr/grp identifiers,

signal handling, etc.

if (pid = fork()) {
…
wait();
} else {
execve(“a.out”);
}

39
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management –
execve/vfork

? execve()
?Discard text, data, and stack segments of the process and

reset its page table
?Load the executable and rebuild text, data, and stack

segments and its page table
?Reset signal handling routines, etc.

? vfork()
?Borrow segments of its parent
? Implementation Concerns
?Suspend the parent until the process terminates or call execve()
?Or
?duplicate the page table of its parent
?Do not create pages unless Copy-on-write pages

6

40
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management

?4.4BSD

proc[i]
entry

process grp…

file descrptors

VM space region lists

page
table Code Segment

Data Segment
heap

user stack
argv, argc,…

.u

per-process
kernel stack

p_p0br

u_proc

p_addr

41
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - Scheduling

?Scheduling Priority
?User-mode: p_usrpri 50~127
?Kernel-mode: p_priority 0 ~ 49
?For the waiting of any event in the kernel mode.
?Processes with p_priority between (PZERO,

PUSER) (i.e., 22 and 50) would be waken up by
a signal. (in 4.3BSD, PZERO = 25)

?CPU Scheduling
?round-robin priority-driven scheduling
?quantum = 100ms

7

42
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - Scheduling

?Ready Queue

…

Priority-decreasing

0
1
2

proc[i] proc[j]

proc[k]

127

•Preemptive Scheduling Policy
•Once a process arrives with a
higher priority while the running
process is in the user mode or exits
from a system call, a context switch
occurs immediately!

43
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - Scheduling
? Scheduling Priority
?Raising Priority
?Longer period being blocked, e.g., one sec
?Blocking in the kernel mode
?nice() ~ -20

?Lowering priority
?Recent CPU usage
?Exit from the kernel mode
?nice() ~ +20

p_usrpri = PUSER + ceiling(p_cpu/4) + 2p_nice ; every tick
p_cpu = [2load/(2load+1)]*p_cpu+p_nice ; every second
p_cpu = p_cpu [2load/(2load+1)]p_slptime ; once the process is awaken.

8

44
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - Scheduling

?Context Switch
?Synchronous CS
?Voluntary
?Call system calls and then sleep

?Involuntary
?Time quantum is up!

?Asynchronous CS
?Device interrupts

45
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

CPU Scheduling - Revisiting

Bottom
Half

Top
Half

processesUser
Space

OS

hardware

Timer expires to
•Expire the running process’s

time quota
•Keep the accounting info

for each process

System calls such as I/O req
which may cause the releasing
CPU of another process!

9

46
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - Scheduling
?Synchronous Voluntary Context Switch
?A system call finally invoke sleep(&wchan)!
?wchan – address of some data struture
?Lbolt: wait for one second
?proc: wait for child process
?u: wait for a signal

?buffer header: wait for I/O operations
?File reading, block flushing, page fault, etc.

?Race Condition
Process call

The waiting event, such as an interrupt,occurs

call sleep()

47
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management - Scheduling

?A general solution in UNIX
for resolving race conditions!
?Raise hardware processor

priority
?e.g., mask interrupts

?Single-thread kernel
?An obstacle for multi-CPU

UNIX!

Bottom
Half

Top
Half

process
system calls, e.g.
READ/WRITE

hardware interrupts

10

48
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Process Management

?scheduler (pid = 0)
?CPU scheduling

?init (pid = 1)
?Create daemons, login processes,

etc.

?pagedaemon (pid = 2)
?Swapper – mid-term scheduler

